

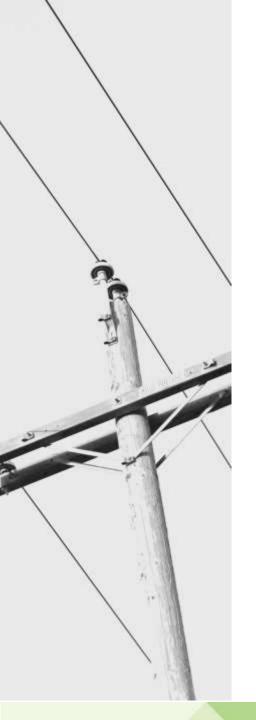
Land acknowledgement

Introduction to your presenters

Robert Greenwald
President

Lizz Hodgson Energy Engineer

Julianne Pickrell-Barr Climate Action Specialist


Sam ThomasPrincipal, Branch Manager

Desired webinar outcomes

 Increase understanding of key GHG emission reduction planning steps and key considerations

- Learn from what other organizations have done
- Inspire you to act towards developing a robust GHG emissions reduction plan

Agenda

- 1. Introduction
- 2. The Why Setting the Context
- 3. The How Planning and Engagement Process and Framework
- 4. Case Studies
- 5. Lessons Learned

Facilitated chat box

- Please enter your questions and comments throughout the presentation
- We will do our best to address them in Q&A sessions

Our Prism Team

BC's leader in helping organizations save energy.

From design to implementation, we provide energy management, electrical and mechanical engineering, utility monitoring and sustainability consulting to help our clients create a greener, more energy efficient world.

What makes us different?

- Depth and breadth of experience and expertise
- **Diversity** of team members
- Accuracy, quality and reputation of work
- Unique innovative solutions

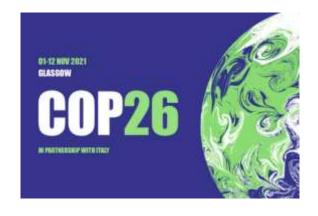
Previous sessions

View presentation slides in our Resource Library: www.prismengineering.com/resources

CLIMATE CHANGE

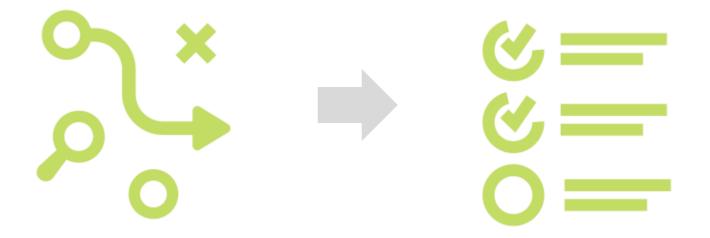
The climate is changing

Growing recognition of the need for action



Source: Wikimedia Commons

Global commitment


Keep global temperature increase to well below 2 degrees Celsius

GHG Emissions targets

- Canada
- BC
- Municipalities
- Corporations & Businesses

From targets to action

Canada's climate action plans

CleanBC Plan

BENEFITS AND RISKS

Benefit and risk categories

- Financial
- Operational & Social

Financial risks

- Price Increases
 - Utility
 - Fuel

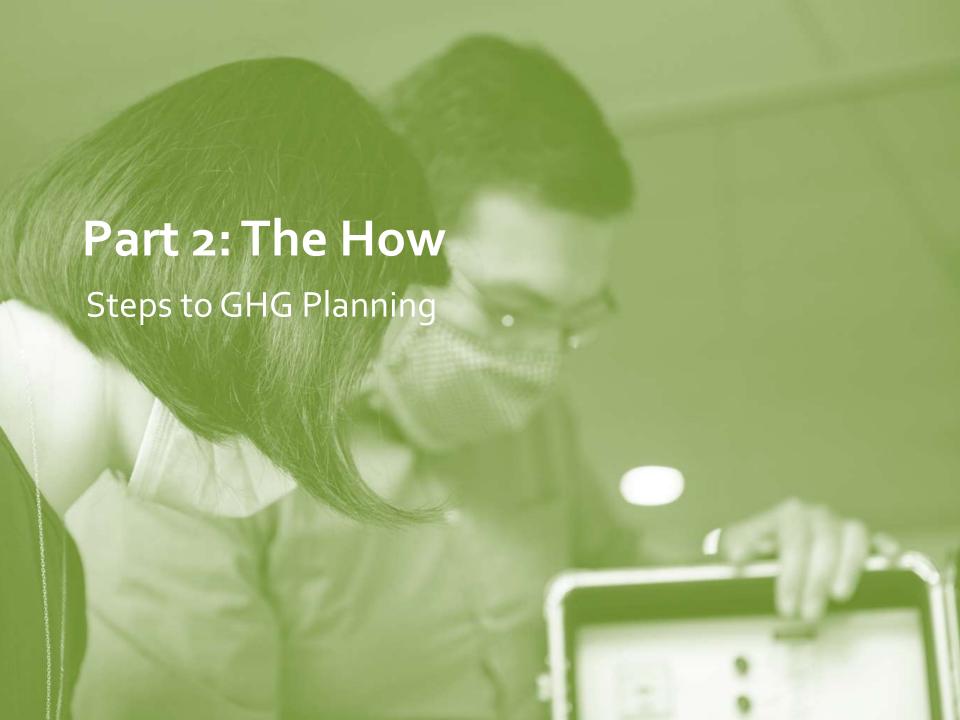
- Carbon Tax
- Carbon Offsets (Public Sector)

Operational & social risks

slido

What are some of the benefits of reducing GHG emissions?

Financial benefits


- Decreased utility & fuel costs
- Carbon credit revenue
- Emission reduction funding
 - Rebates & grants

Operational & social benefits

- Employee recruitment and retention
- Environmental and health benefits
- Equity environmental social justice
- Brand impacts

Steps to GHG Planning

6 measure & adjust

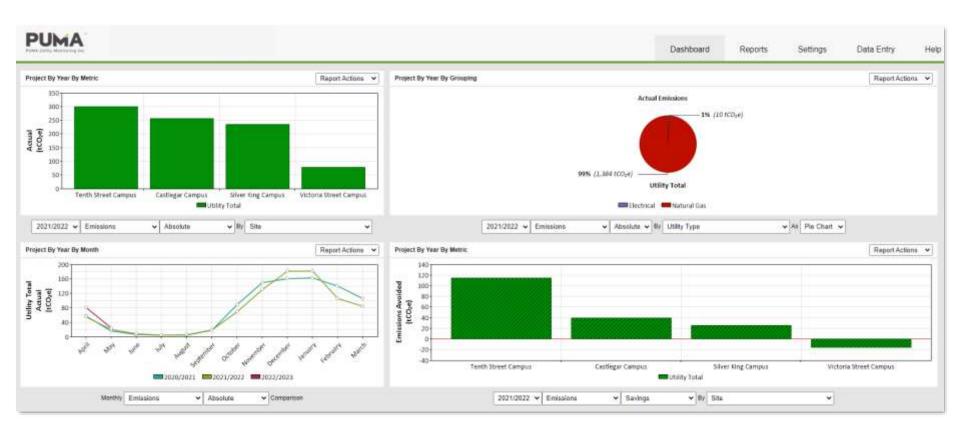
1 assess the current situation

5 plan & implement

2 establish vision & targets

4 find the optimal pathway

3 understand systems & identify opportunities


1. Assess the current situation

Where to begin?

- A. Internal Review
- B. External Scan

C. Engage People

Using the right data

2. Establish vision& targets

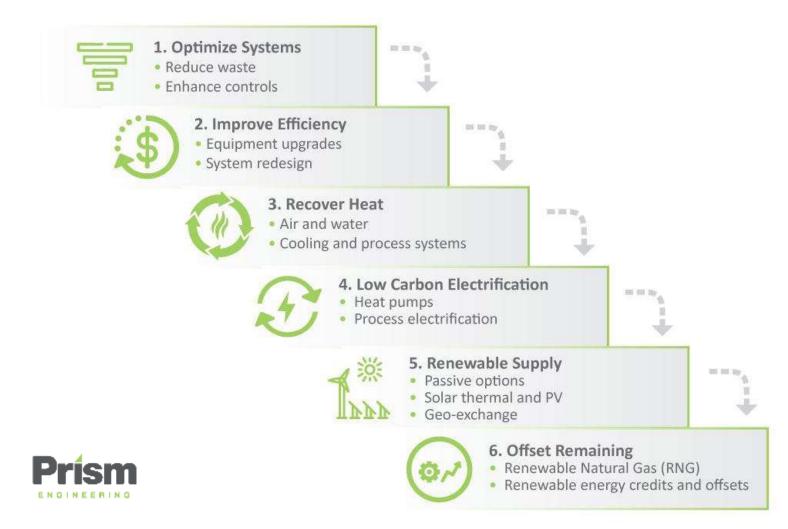
Visioning workshop

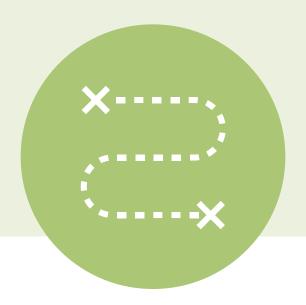
Approach to targets

- Top down
- Bottom up
- Both!

slido

Does your organization have a GHG emissions reduction target?




3. Understand systems & identify projects

Prism's pathway to net zero

REDUCE ENERGY + CARBON

REDUCE CARBON

4. Find the optimal pathway

Pathway Example

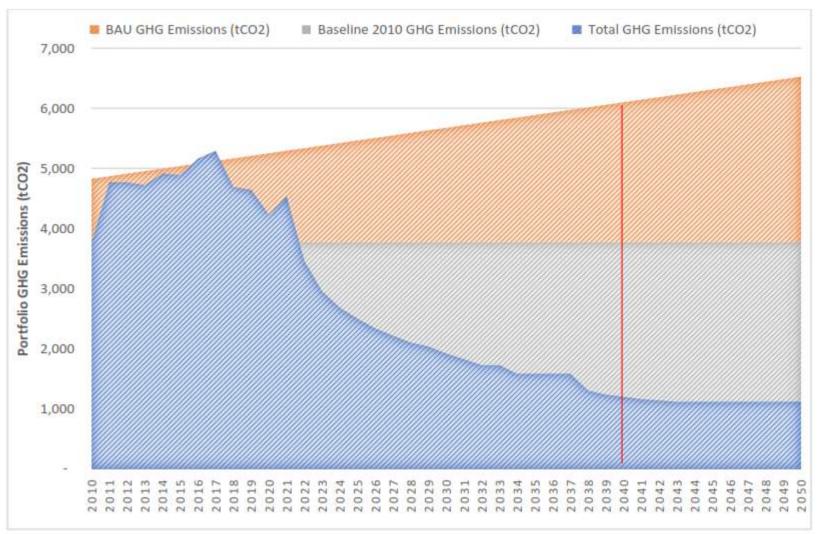
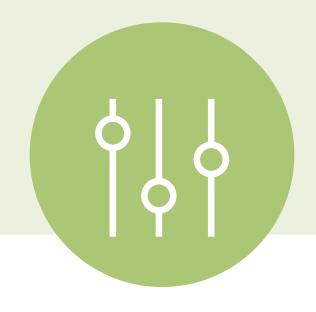
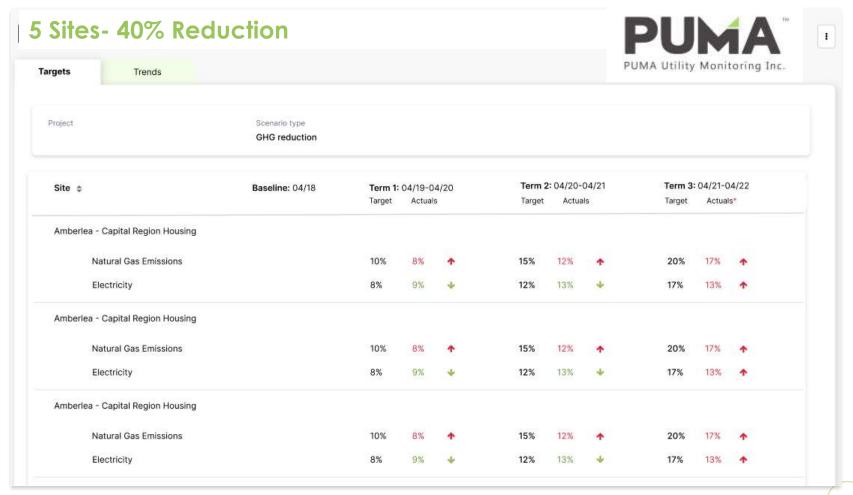


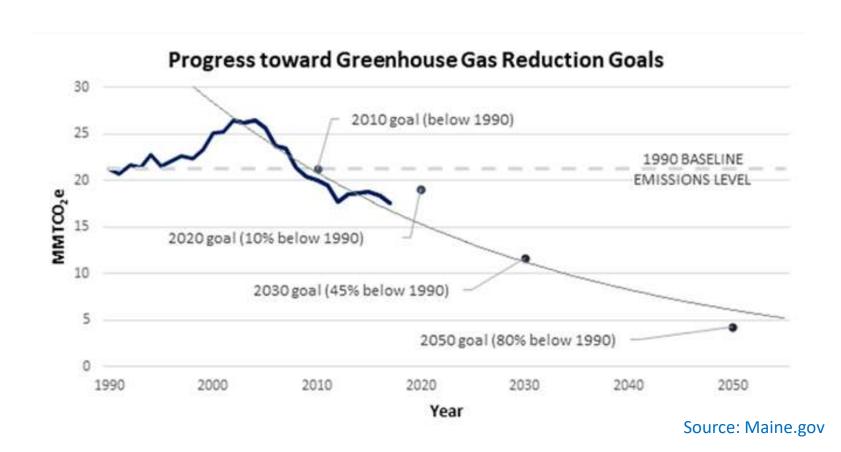
Figure 4: Carbon Pathway B: GHG Cost-Impact Basis



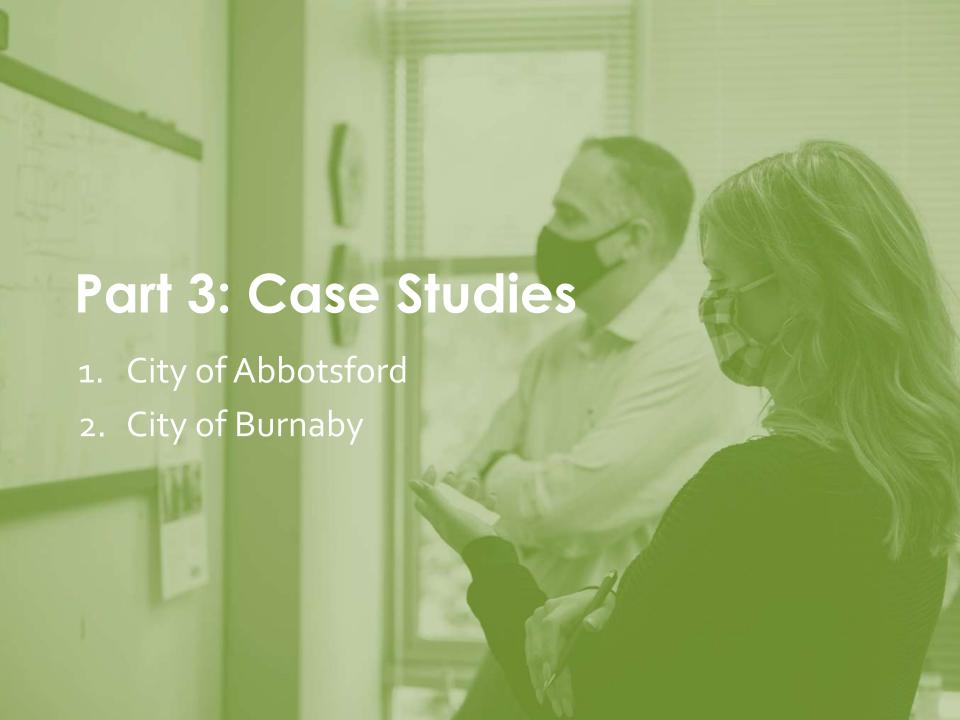
5. Plan & implement

Strategic approach to implementation


- Involve people, again!
- Planning
- Implementation considerations



6. Measure & adjust


Progress towards targets

Progress towards targets

City of Abbotsford

Overview

6 measure & adjust

1 assess the current situation

5 plan & implement

2 establish vision & targets

4 find the optimal pathway

3 understand systems & identify opportunities

GHG Planning: Establish Profile & Reporting Framework

- Collection of present and historical baseline utility data using PUMA
- Estimation of historical data

Outcomes:

- Established 2007 baseline and 2020 emissions profile
- Developed City policy for reporting emissions post CARIP
- Identified emission reporting/accounting gaps

Framework for Emissions Tracking and Reporting

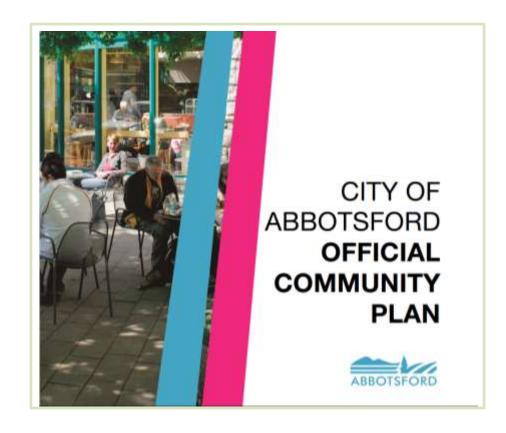
Methodology & Framework for Emission Tracking and Reporting

Tracking and Reporting Scope

GHG Emission Factors

Gap Analysis

Existing Portfolio

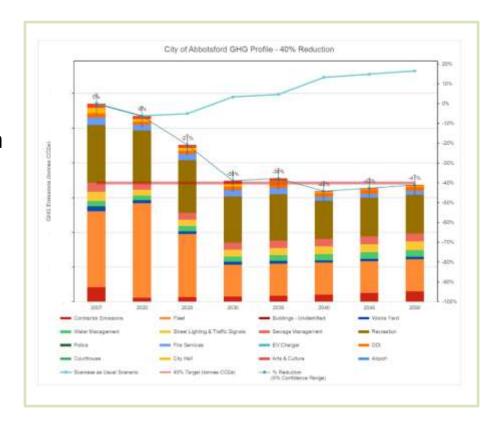

Estimation of Missing or Incomplete Data

GHG Planning: Official Community Plan

Greenhouse Gas Emission Reduction Target:

- 20% reduction by 2025
- 40% reduction by 2040
- below 2007 level

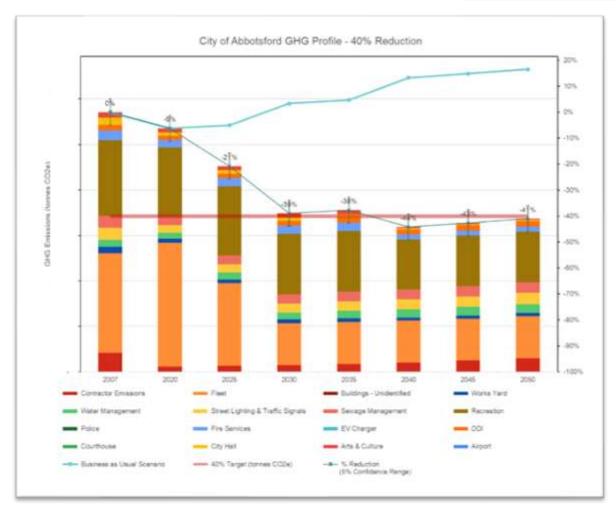
GHG Planning: GHG Emissions Model


GHG Emissions Model

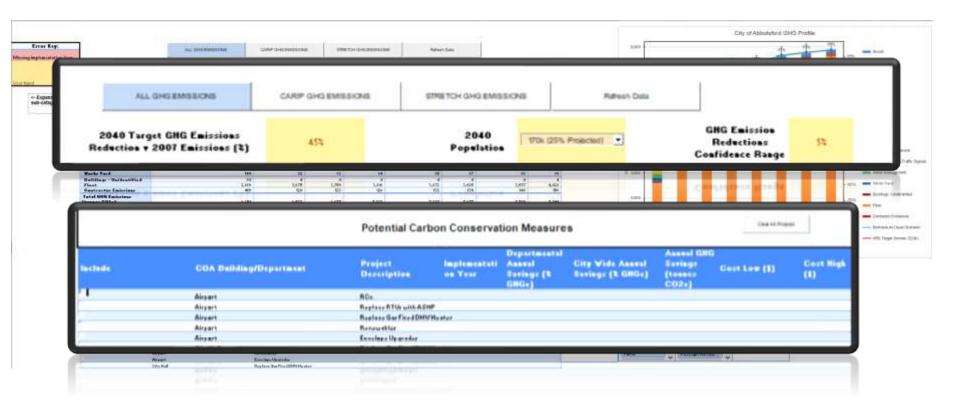
Impacts on GHG model:

- Emission reduction projects
- Population & Service growth
- Technology changes
- Escalation of GHG emission costs

Outcomes:


Identification of pathways to 40% GHG emission reduction

GHG Planning: GHG Emissions Model



GHG Planning: Summary

GHG Planning: Engage Stakeholders, Develop Policy

Outcomes:

City Council Approval

- Funding
- Organizational alignment

Corporate Policies Developed

- New Construction
- Asset Planning

COUNCIL REPORT

Executive Committee

Report No. ENG 014-2022

Date: June 07, 2022 File No: 5280-01

To: Mayor and Council

From: Luisa Jones, Acting Director, Environmental Services

Subject: Green Civic Building Strategy

RECOMMENDATION

THAT Council approve the Green Civic Buildings Strategy, comprised of the Green Buildings Framework and the Green Buildings Policy, as guiding documents for corporate climate action.

CITY OF ABBOTSFORD

GREEN BUILDINGS FRAMEWORK

2007 BASELINE

GHG Emissions Targets

Official Community Plan (OCP) Targets:

20% reduction by 2025

40% reduction by 2040

2025

2040

What we do

Our Climate Action Framework focuses on three key strategies:

Use less energy & resources

Reduce GHG emissions

Use renewable energy

How we drive corporate change

Everyone has a part to play to make a difference on climate action.

Policy

Setting a course of action

Projects

Implementing climate action measures

People & Planning

Building relationships. teams, partnerships

The results we seek

Our Climate Action Framework strives for a wide range of positive outcomes:

Buildings & Infrastructure Improvement

Renewed and improved assets Energy efficiency GHG reduction

Corporate Excellence

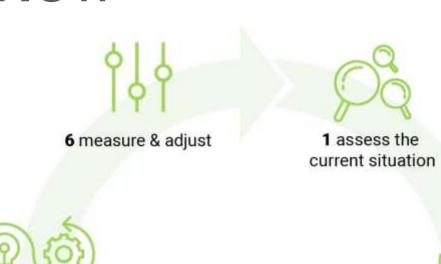
Develop financial resilience **Build strategic partnerships** Maximize external funding Meeting climate action targets

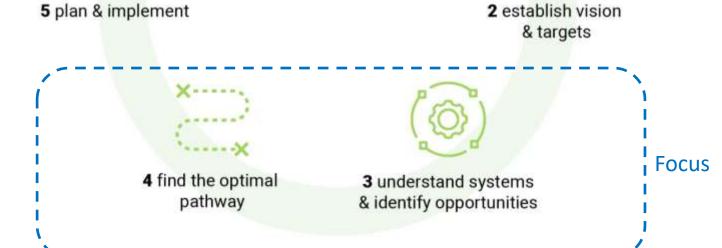
Environmental Stewardship

Fewer extreme weather events Cleaner airshed Achieve climate resiliency

Learn more at: www.abbotsford.ca/community-events/environment/climate-change

PROGRESS ON CLIMATE ACTION COMMITMENTS



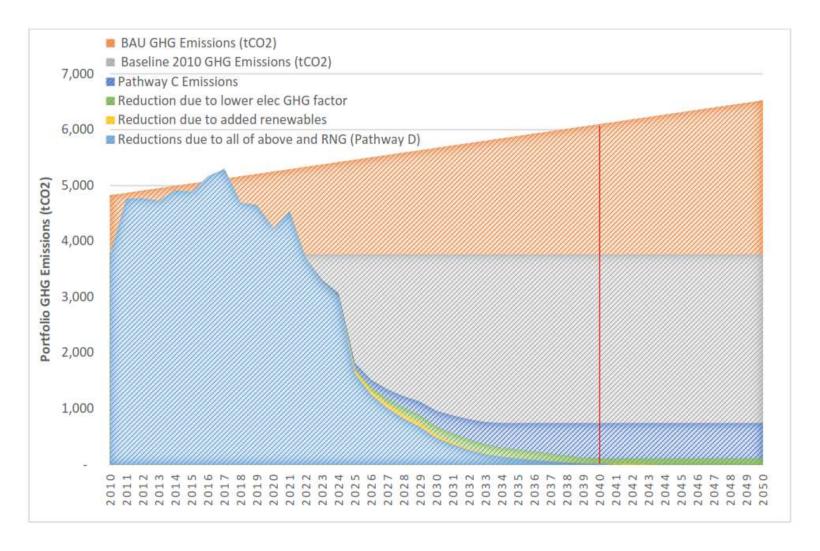

City of Burnaby

Overview

List of Opportunities

Building Number	Building Name	Measure ID	Existing Condition	Proposed Measure	Equipment				Energy Savings (\$/Yr.)	Budget Retrofit Cost (\$)	GHG Emissi ons Redi	Investment Per Ton Reduced (\$/ton)
1	Anderson House	E-CRM-1B	Atmospheric gas-fired boiler is used to supply heat to the hydronic heating system.	DEEP CARBON REDUCTION MEASURE: Install air-to-water heat pump and modify radiators	2012	-12,754	-6	197	\$410	\$45,000	9.31	\$4,800
1	Anderson House	E-CRM-2	Gaps in insulation, single glazed windows and other envelope deficiencies contribute to envelope heating losses and cold air infiltration.	Repair envelope deficiencies as appropriate.	No Date - High Replacemen t Urgency	0	0	22	\$227	\$10,000	1.11	\$9,000
1	Anderson House	G-CRM-1a	Atmospheric gas-fired boiler is used to supply heat to the hydronic heating system.	INTERIMMEASURE: Install condensing boiler	2012	0	0	21	\$217	\$15,000	1.06	\$14,100
2	Still Creek Works Yard-Ops Bldg/Storage Bldg/Truck Wash	E-CRM-1	(2) 83KW Natural Gas fired boilers providing backup and supplementary heat for air source heat pump in operations building.	Utilizing electric backup boilers for supplementary heat	2014	-82,940	70	375	-\$7,196	\$483,799	15.36	\$31,498
2	Still Creek Works Yard-Ops Bldg/Storage Bldg/Truck Wash	E-CRM-2	Operations and Truck Wash buildings have natural gas fired domestic hot water heaters	Install electric air source heat pump domestic hot water heaters	2014	-9,220	130	85	-\$4,400	\$169,620	3.90	\$43,493
2	Still Creek Works Yard-Ops Bldg/Storage Bldg/Truck	E-CRM-5	No renewable energy generation on site	Install Solar PV on roof(s) of the building(s) at the facility	N/A	225,720	-	-	\$21,737	\$648,000	9.03	\$71,761
2	Still Creek Works Yard-Ops Bldg/Storage Bldg/Truck	E-CRM-6A	Gas fired MUA-SB-01 provides heat for Storage Building	Install Packaged Heat Pump Makeup Air Unit	2014	-10,265	170	120	-\$5,509	\$285,268	5.57	\$51,216
2	Still Creek Works Yard-Ops Bldg/Storage Bldg/Truck	E-CRM-6B	Gas Fired Unit heaters provide heat in the Storage and Truck Wash	Install electric unit heaters	2014	-17,935	290	85	-\$10,413	\$191,272	3.52	\$54,339
3	Alan Emmott Centre	E-CRM-6	Gas fired MAU-1 provides heat for the building	Install Packaged Heat Pump Makeup Air Unit	2002	-290	30	5	-\$957	\$57,705	0.24	\$240,439
4	Bby. Art Gallery - Gallery	E-CRM-1	High efficiency natural gas condensing boiler to provide heating to the building. Cooling, ventilation and humidity control is provided by air handling units with DX cooling and electric reheats.	Install a VRF heat pump system to provide heating and cooling to the building.	No Date - Low Replacemen t Urgency	- 38,600	-	540	\$811	\$70,000	26.54	\$2,600
5	Bby. Lake Rowing Pavilion	E-CRM-1	Natural gas fired domestic hot water heating tank used to supply washrooms and kitchen.	Incorporate a residential on- demand electric water heater in place of the existing natural gas heating tank.	2013	- 16,867	- 9	76	-\$1,333	\$1,800	3.11	\$600
5	Bby. Lake Rowing Pavilion	E-CRM-2	Two 60 MBH Natural Gas Unit Heaters currently provide heating to boat and equipment storage.	Replace with two equivalent electric unit heaters.	2020	- 22,066	- 9	99	-\$1,744	\$9,300	4.06	\$2,300
5	Bby. Lake Rowing Pavilion	E-CRM-3b	Two air handling units currently use gas-fired heating. Cooling is provided to the main hall by two	Replace air handling units with an air source heat pump sized to meet building heating requirements. Existing	2016	- 51,219	- 19	565	-\$651	\$130,000	26.10	\$5,000

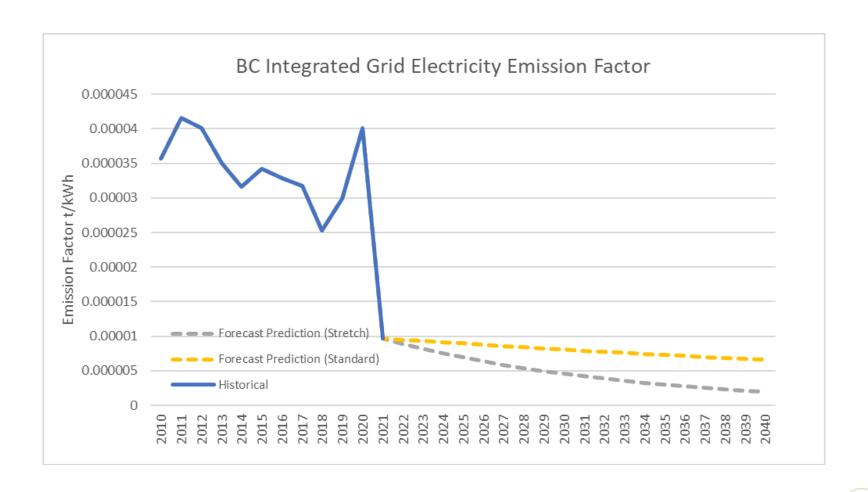
Pathway Scenarios


Result

(% reduction in GHG emissions over 2010 base period levels)

Pathway	Description	period levels)					
Pathway A	Asset Life Basis This pathway prioritizes implementing CRMs that involve replacement of equipment with the lowest remaining asset life first.	38%					
Pathway B	GHG Cost-Impact Basis This pathway prioritizes implementing CRMs that have the highest benefit (tons CO ₂ e/year emission reduction) per dollar invested first.	68%					
Pathway C	Blended This pathway applies a weighting factor to the modelled elements of Pathway A and B to prioritize CRMs that offer benefits both on an asset life and GHG cost-impact basis.	68%					
Pathway D	Net Zero by 2040 This pathway builds on Pathway C, and adds the elements required to achieve the City's goal of Net Zero emissions by 2040.	84% (Standard 1) 89% (Standard 2)* 100% (Stretch)* – Net Zero					

Pathway D - Net Zero



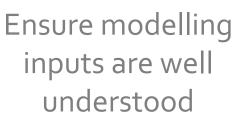
Sensitivity analysis

- Pathways modelling is sensitive to numerous inputs which are important to test and understand.
 - Retrofit costs and savings
 - Electricity emission factors
 - Carbon tax
 - Asset disposals and investments
 - Available supply of renewables such as RNG
 - Disruptive changes in future technologies
 - Others...

Critical model inputs

Go back to step 1 if needed

Top-down + bottom-up for targets


Timing is key: sooner is better

Don't let perfect be the enemy of good - Voltaire

Thank you.

Robert Greenwald, President

Robert@prismengineering.com

Lizz Hodgson, Energy Engineer

LizzH@prismengineering.com

Julianne Pickrell-Barr, Climate Action Specialist Julianne PB@prismengineering.com

Sam Thomas, Principal, Branch Manager Sam@prismengineering.com

www.prismengineering.com

@prismengineeringlimited

@Prism_Eng

